Custom Soil Resource Report for Rappahannock County, Virginia

Avon Hall

March 21, 2013
Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://soils.usda.gov/sqi/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (http://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://soils.usda.gov/contact/state_offices/).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Soil Data Mart Web site or the NRCS Web Soil Survey. The Soil Data Mart is the data storage site for the official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means
for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.
Contents

Preface ... 2
How Soil Surveys Are Made ... 5
Soil Map .. 7
 Soil Map .. 8
 Legend ... 9
 Map Unit Legend .. 10
 Map Unit Descriptions ... 10
 Rappahannock County, Virginia ... 12
 EbC—Eubanks-Brandywine complex, sloping phases .. 12
 EuB—Eubanks and Lloyd loams, gently sloping phases 13
 EuC2—Eubanks and Lloyd loams, eroded sloping phases 14
 Me—Meadowville loam .. 16
 Wo—Worsham silt loam ... 17
Soil Information for All Uses ... 19
 Soil Reports .. 19
 Land Classifications ... 19
 Hydric Soils (Hydric Soil Ratings for Avon Hall) ... 19
References .. 22
How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil scientists classified and named the soils in the survey area, they compared the
individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.
Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.
Custom Soil Resource Report
Soil Map

Map Scale: 1:2,480 if printed on A size (8.5" x 11") sheet.

0 30 60 120 180 Feet
0 100 200 400 600 Meters

38° 42' 48"
38° 42' 37"
MAP LEGEND

<table>
<thead>
<tr>
<th>Area of Interest (AOI)</th>
<th>Area of Interest (AOI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soils</td>
<td>Soil Map Units</td>
</tr>
<tr>
<td>Special Point Features</td>
<td>Blind Pit</td>
</tr>
<tr>
<td></td>
<td>Clay Pit</td>
</tr>
<tr>
<td></td>
<td>Closed Depressin</td>
</tr>
<tr>
<td></td>
<td>Gravel Pit</td>
</tr>
<tr>
<td></td>
<td>Gravelly Spot</td>
</tr>
<tr>
<td></td>
<td>Landfill</td>
</tr>
<tr>
<td></td>
<td>Lava Flow</td>
</tr>
<tr>
<td></td>
<td>Marsh or swamp</td>
</tr>
<tr>
<td></td>
<td>Mine or Quarry</td>
</tr>
<tr>
<td></td>
<td>Miscellaneous Water</td>
</tr>
<tr>
<td></td>
<td>Perennial Water</td>
</tr>
<tr>
<td></td>
<td>Rock Outcrop</td>
</tr>
<tr>
<td></td>
<td>Saline Spot</td>
</tr>
<tr>
<td></td>
<td>Sandy Spot</td>
</tr>
<tr>
<td></td>
<td>Severely Eroded Spot</td>
</tr>
<tr>
<td></td>
<td>Sinkhole</td>
</tr>
<tr>
<td></td>
<td>Slide or Slip</td>
</tr>
<tr>
<td></td>
<td>Sodic Spot</td>
</tr>
<tr>
<td></td>
<td>Spoil Area</td>
</tr>
<tr>
<td></td>
<td>Stony Spot</td>
</tr>
</tbody>
</table>

MAP INFORMATION

Map Scale: 1:2,480 if printed on A size (8.5” × 11”) sheet.

The soil surveys that comprise your AOI were mapped at 1:20,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service

Coordinate System: UTM Zone 17N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Rappahannock County, Virginia

Survey Area Data: Version 9, Aug 9, 2010

Date(s) aerial images were photographed: 6/6/2003

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Map Unit Legend

<table>
<thead>
<tr>
<th>Map Unit Symbol</th>
<th>Map Unit Name</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>EbC</td>
<td>Eubanks-Brandywine complex, sloping phases</td>
<td>5.7</td>
<td>24.1%</td>
</tr>
<tr>
<td>EuB</td>
<td>Eubanks and Lloyd loams, gently sloping phases</td>
<td>7.0</td>
<td>29.4%</td>
</tr>
<tr>
<td>EuC2</td>
<td>Eubanks and Lloyd loams, eroded sloping phases</td>
<td>3.3</td>
<td>13.9%</td>
</tr>
<tr>
<td>Me</td>
<td>Meadowville loam</td>
<td>4.4</td>
<td>18.5%</td>
</tr>
<tr>
<td>Wo</td>
<td>Worsham silt loam</td>
<td>3.3</td>
<td>14.1%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td>23.7</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments
on the map provides sufficient information for the development of resource plans. If
intensive use of small areas is planned, however, onsite investigation is needed to
define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each
description includes general facts about the unit and gives important soil properties
and qualities.

Soils that have profiles that are almost alike make up a soil series. Except for
differences in texture of the surface layer, all the soils of a series have major horizons
that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity,
degree of erosion, and other characteristics that affect their use. On the basis of such
differences, a soil series is divided into soil phases. Most of the areas shown on the
detailed soil maps are phases of soil series. The name of a soil phase commonly
indicates a feature that affects use or management. For example, Alpha silt loam, 0
to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas.
These map units are complexes, associations, or undifferentiated groups.

A complex consists of two or more soils or miscellaneous areas in such an intricate
pattern or in such small areas that they cannot be shown separately on the maps. The
pattern and proportion of the soils or miscellaneous areas are somewhat similar in all
areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or
miscellaneous areas that are shown as one unit on the maps. Because of present or
anticipated uses of the map units in the survey area, it was not considered practical
or necessary to map the soils or miscellaneous areas separately. The pattern and
relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-
Beta association, 0 to 2 percent slopes, is an example.

An undifferentiated group is made up of two or more soils or miscellaneous areas that
could be mapped individually but are mapped as one unit because similar
interpretations can be made for use and management. The pattern and proportion of
the soils or miscellaneous areas in a mapped area are not uniform. An area can be
made up of only one of the major soils or miscellaneous areas, or it can be made up
of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include miscellaneous areas. Such areas have little or no soil material
and support little or no vegetation. Rock outcrop is an example.
Rappahannock County, Virginia

EbC—Eubanks-Brandywine complex, sloping phases

Map Unit Setting
- **Landscape:** Mountains
- **Elevation:** 300 to 1,000 feet
- **Mean annual precipitation:** 36 to 48 inches
- **Mean annual air temperature:** 57 to 64 degrees F
- **Frost-free period:** 185 to 200 days

Map Unit Composition
- **Eubanks and similar soils:** 50 percent
- **Brandywine and similar soils:** 30 percent

Description of Eubanks

Setting
- **Landform:** Mountain slopes
- **Landform position (two-dimensional):** Shoulder
- **Landform position (three-dimensional):** Mountaintop
- **Down-slope shape:** Convex
- **Across-slope shape:** Convex
- **Parent material:** Residuum weathered from granodiorite

Properties and qualities
- **Slope:** 7 to 14 percent
- **Depth to restrictive feature:** More than 80 inches
- **Drainage class:** Well drained
- **Capacity of the most limiting layer to transmit water (Ksat):** Moderately high to high (0.57 to 5.95 in/hr)
- **Depth to water table:** More than 80 inches
- **Frequency of flooding:** None
- **Frequency of ponding:** None
- **Available water capacity:** Moderate (about 7.3 inches)

Interpretive groups
- **Farmland classification:** Farmland of statewide importance
- **Land capability (nonirrigated):** 3e
- **Hydrologic Soil Group:** B

Typical profile
- 0 to 7 inches: Loam
- 7 to 37 inches: Clay loam
- 37 to 60 inches: Sandy loam

Description of Brandywine

Setting
- **Landform:** Mountain slopes
- **Landform position (two-dimensional):** Shoulder
- **Landform position (three-dimensional):** Mountaintop
- **Down-slope shape:** Convex
- **Across-slope shape:** Convex
- **Parent material:** Residuum weathered from granite and gneiss
Properties and qualities

Slope: 7 to 14 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat excessively drained
Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Low (about 4.2 inches)

Interpretive groups

Farmland classification: Farmland of statewide importance
Land capability (nonirrigated): 3e
Hydrologic Soil Group: A

Typical profile

0 to 10 inches: Loam
10 to 14 inches: Gravelly loam
14 to 20 inches: Gravelly sandy loam
20 to 50 inches: Very gravelly loamy sand

EuB—Eubanks and Lloyd loams, gently sloping phases

Map Unit Setting

Landscape: Piedmonts
Elevation: 300 to 1,200 feet
Mean annual precipitation: 36 to 48 inches
Mean annual air temperature: 57 to 64 degrees F
Frost-free period: 185 to 200 days

Map Unit Composition

Lloyd and similar soils: 50 percent
Eubanks and similar soils: 50 percent

Description of Eubanks

Setting

Landform: Hillslopes
Landform position (two-dimensional): Summit
Landform position (three-dimensional): Interfluve
Down-slope shape: Convex
Across-slope shape: Convex
Parent material: Residuum weathered from granodiorite

Properties and qualities

Slope: 2 to 7 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 5.95 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Moderate (about 7.3 inches)

Interpretive groups
Farmland classification: Farmland of statewide importance
Land capability (nonirrigated): 2e
Hydrologic Soil Group: B

Typical profile
0 to 7 inches: Loam
7 to 37 inches: Clay loam
37 to 60 inches: Sandy loam

Description of Lloyd

Setting
Landform: Hillslopes
Landform position (two-dimensional): Summit
Landform position (three-dimensional): Interfluve
Down-slope shape: Convex
Across-slope shape: Convex
Parent material: Residuum weathered from metamorphic rock

Properties and qualities
Slope: 2 to 7 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to high (0.00 to 1.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Low (about 5.9 inches)

Interpretive groups
Farmland classification: Farmland of statewide importance
Land capability (nonirrigated): 2e
Hydrologic Soil Group: C

Typical profile
0 to 9 inches: Loam
9 to 26 inches: Clay
26 to 40 inches: Clay loam
40 to 78 inches: Loam

EuC2—Eubanks and Lloyd loams, eroded sloping phases

Map Unit Setting
Landscape: Piedmonts
Elevation: 300 to 1,200 feet
Mean annual precipitation: 36 to 48 inches
Mean annual air temperature: 57 to 64 degrees F
Frost-free period: 185 to 200 days

Map Unit Composition
Lloyd and similar soils: 50 percent
Eubanks and similar soils: 50 percent

Description of Eubanks
Setting
Landform: Hillslopes
Landform position (two-dimensional): Shoulder
Landform position (three-dimensional): Interfluve
Down-slope shape: Convex
Across-slope shape: Convex
Parent material: Residuum weathered from granodiorite

Properties and qualities
Slope: 7 to 14 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high
(0.57 to 5.95 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Moderate (about 7.3 inches)

Interpretive groups
Farmland classification: Farmland of statewide importance
Land capability (nonirrigated): 4e
Hydrologic Soil Group: B

Typical profile
0 to 7 inches: Loam
7 to 37 inches: Clay loam
37 to 60 inches: Sandy loam

Description of Lloyd
Setting
Landform: Hillslopes
Landform position (two-dimensional): Shoulder
Landform position (three-dimensional): Interfluve
Down-slope shape: Convex
Across-slope shape: Convex
Parent material: Residuum weathered from metamorphic rock

Properties and qualities
Slope: 7 to 14 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high
(0.57 to 1.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Low (about 5.9 inches)

Interpretive groups
Farmland classification: Farmland of statewide importance
Land capability (nonirrigated): 4e
Hydrologic Soil Group: C

Typical profile
0 to 9 inches: Loam
9 to 26 inches: Clay
26 to 40 inches: Clay loam
40 to 78 inches: Loam

Me—Meadowville loam

Map Unit Setting
Landscape: Piedmonts
Elevation: 350 to 1,200 feet
Mean annual precipitation: 36 to 48 inches
Mean annual air temperature: 57 to 64 degrees F
Frost-free period: 185 to 200 days

Map Unit Composition
Meadowville and similar soils: 85 percent
Minor components: 3 percent

Description of Meadowville
Setting
Landform: Drainageways
Landform position (two-dimensional): Toeslope
Landform position (three-dimensional): Interfluve
Down-slope shape: Convex
Across-slope shape: Convex
Parent material: Alluvium

Properties and qualities
Slope: 2 to 7 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 5.95 in/hr)
Depth to water table: About 36 to 60 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Moderate (about 7.9 inches)

Interpretive groups
Farmland classification: All areas are prime farmland
Land capability (nonirrigated): 2e
Hydrologic Soil Group: B

Typical profile
- 0 to 11 inches: Loam
- 11 to 21 inches: Loam
- 21 to 36 inches: Sandy clay loam
- 36 to 50 inches: Gravelly sandy loam

Minor Components

Worsham
- Percent of map unit: 3 percent
- Landform: Depressions
- Landform position (three-dimensional): Tread
- Down-slope shape: Linear
- Across-slope shape: Linear

Wo—Worsham silt loam

Map Unit Setting
- Landscape: Piedmonts
- Mean annual precipitation: 36 to 48 inches
- Mean annual air temperature: 57 to 64 degrees F
- Frost-free period: 185 to 200 days

Map Unit Composition
- Worsham and similar soils: 85 percent

Description of Worsham

Setting
- Landform: Depressions
- Landform position (three-dimensional): Tread
- Down-slope shape: Linear
- Across-slope shape: Linear
- Parent material: Residuum weathered from granite and gneiss and/or residuum weathered from granodiorite

Properties and qualities
- Slope: 0 to 7 percent
- Depth to restrictive feature: More than 80 inches
- Drainage class: Poorly drained
- Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
- Depth to water table: About 0 to 12 inches
- Frequency of flooding: None
- Frequency of ponding: None
- Available water capacity: Moderate (about 6.9 inches)

Interpretive groups
- Farmland classification: Not prime farmland
Land capability (nonirrigated): 4w
Hydrologic Soil Group: D

Typical profile
0 to 8 inches: Silt loam
8 to 35 inches: Clay
35 to 50 inches: Sandy loam
Soil Information for All Uses

Soil Reports

The Soil Reports section includes various formatted tabular and narrative reports (tables) containing data for each selected soil map unit and each component of each unit. No aggregation of data has occurred as is done in reports in the Soil Properties and Qualities and Suitabilities and Limitations sections.

The reports contain soil interpretive information as well as basic soil properties and qualities. A description of each report (table) is included.

Land Classifications

This folder contains a collection of tabular reports that present a variety of soil groupings. The reports (tables) include all selected map units and components for each map unit. Land classifications are specified land use and management groupings that are assigned to soil areas because combinations of soil have similar behavior for specified practices. Most are based on soil properties and other factors that directly influence the specific use of the soil. Example classifications include ecological site classification, farmland classification, irrigated and nonirrigated land capability classification, and hydric rating.

Hydric Soils (Hydric Soil Ratings for Avon Hall)

This table lists the map unit components that are rated as hydric soils in the survey area. This list can help in planning land uses; however, onsite investigation is recommended to determine the hydric soils on a specific site (National Research Council, 1995; Hurt and others, 2002).

The three essential characteristics of wetlands are hydrophytic vegetation, hydric soils, and wetland hydrology (Cowardin and others, 1979; U.S. Army Corps of Engineers, 1987; National Research Council, 1995; Tiner, 1985). Criteria for all of the characteristics must be met for areas to be identified as wetlands. Undrained hydric soils that have natural vegetation should support a dominant population of ecological wetland plant species. Hydric soils that have been converted to other uses should be capable of being restored to wetlands.

Hydric soils are defined by the National Technical Committee for Hydric Soils (NTCHS) as soils that formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part...
These soils, under natural conditions, are either saturated or inundated long enough during the growing season to support the growth and reproduction of hydrophytic vegetation.

The NTCHS definition identifies general soil properties that are associated with wetness. In order to determine whether a specific soil is a hydric soil or nonhydric soil, however, more specific information, such as information about the depth and duration of the water table, is needed. Thus, criteria that identify those estimated soil properties unique to hydric soils have been established (Federal Register, 2002). These criteria are used to identify map unit components that normally are associated with wetlands. The criteria used are selected estimated soil properties that are described in "Soil Taxonomy" (Soil Survey Staff, 1999) and "Keys to Soil Taxonomy" (Soil Survey Staff, 2006) and in the "Soil Survey Manual" (Soil Survey Division Staff, 1993).

If soils are wet enough for a long enough period of time to be considered hydric, they should exhibit certain properties that can be easily observed in the field. These visible properties are indicators of hydric soils. The indicators used to make onsite determinations of hydric soils are specified in "Field Indicators of Hydric Soils in the United States" (Hurt and Vasilas, 2006).

Hydric soils are identified by examining and describing the soil to a depth of about 20 inches. This depth may be greater if determination of an appropriate indicator so requires. It is always recommended that soils be excavated and described to the depth necessary for an understanding of the redoximorphic processes. Then, using the completed soil descriptions, soil scientists can compare the soil features required by each indicator and specify which indicators have been matched with the conditions observed in the soil. The soil can be identified as a hydric soil if at least one of the approved indicators is present.

Map units that are dominantly made up of hydric soils may have small areas, or inclusions, of nonhydric soils in the higher positions on the landform, and map units dominantly made up of nonhydric soils may have inclusions of hydric soils in the lower positions on the landform.

The criteria for hydric soils are represented by codes in the table (for example, 2B3). Definitions for the codes are as follows:

1. All Histels except for Folistels, and Histosols except for Folists.
2. Soils in Aquic suborders, great groups, or subgroups, Albolls suborder, Historthels great group, Histoturbels great group, or Andic, Cumulic, Pachic, or Vitrandic subgroups that:
 A. are somewhat poorly drained and have a water table at the surface (0.0 feet) during the growing season, or
 B. are poorly drained or very poorly drained and have either:
 i. a water table at the surface (0.0 feet) during the growing season if textures are coarse sand, sand, or fine sand in all layers within a depth of 20 inches, or
 ii. a water table at a depth of 0.5 foot or less during the growing season if saturated hydraulic conductivity (Ksat) is equal to or greater than 6.0 in/hr in all layers within a depth of 20 inches, or
 iii. a water table at a depth of 1.0 foot or less during the growing season if saturated hydraulic conductivity (Ksat) is less than 6.0 in/hr in any layer within a depth of 20 inches.
3. Soils that are frequently ponded for long or very long duration during the growing season.
4. Soils that are frequently flooded for long or very long duration during the growing season.

References:

Report—Hydric Soils (Hydric Soil Ratings for Avon Hall)

<table>
<thead>
<tr>
<th>Map symbol and map unit name</th>
<th>Component</th>
<th>Percent of map unit</th>
<th>Landform</th>
<th>Hydric criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me—Meadowville loam</td>
<td>Worsham</td>
<td>3</td>
<td>Depressions</td>
<td>2B3</td>
</tr>
<tr>
<td>Wo—Worsham silt loam</td>
<td>Worsham</td>
<td>85</td>
<td>Depressions</td>
<td>2B3</td>
</tr>
</tbody>
</table>
References

